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OF THE STEFAN 

OKHEZIN 

It was shvn in [l, 2, 41, when approximating the parabolic Stefan problem by a family of optimal- 

arntrol problems in which the controlling parameter is the farm of the region ixl which the state- 

temperature function of the liquid phase is defined, that the classical solution of the Stefan problem is 
the limit of the soIutioas of the corresponding approximation problems in tbe metrics of approximate 

f~joo~ spaces. The structure of the optimal-~0~01 appro~rn~~o~ problems which model the 
s&fan problem is investigated, the n~aary conditions for these problems to be solvable are obtained, 

and a proof of the convergence of the propcsed approximate methods of solving them is given. 

1. FORMULATION OF THE PROBLEM 

THE FOLLWING model of the one-dimensional frontal and single-phase 
considered 

y’(f* x> = y”(f, x)* 0 < f G T, 0 <x < H(f) 

y(0, x) = rp&, Cl s x =s 110 

y@, 0) = 0, y(t, u(t)) = 0, 0 6 t c T 

y’(t, u(t)) = -ku’ft), 0 < t d 2” 

u(0) = ug 

Stefan problem is 

Here y (t, x) is the temperature of the liquid phase at the point n at the instant of time c. The 
function cp& describes the initial tem~erat~e d~str~butiou in the liquid phase, and u(t) is 
the change in the form of the region ~cupjed by the liquid phase. Knutson (1.4) is the 
mathemat~~l form of the heap-balance equation at the interface between the liquid and 
the solid phases. ft is assumed in the model that the temperature of the solid phase is equal to 
the temperature of the phase tradition and is zero. The dot denotes differentiation with 
respect to t, and the prime denotes d~ferentiatjon with respect to x 

Problem (1.1)~(LS), as in [1, 21, becomes an optimal-control problem of special structure 

Y~tf~x~-Y~~~~x)+E-‘U,ff,x;u(_))y,(t,x)=0, o<ts T, OGk<X 
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y&, 0) = y,(r, x) = 0, 0 s t s T 

K’(f) = u(r), K(0) = Kg 
(1.6) 

Here E > 0 is a numerical parameter, and the function u(t) plays the role of the control, and 

(0, 0 s x 6 U(t) 

UE(f,.w(~)) = 
i 

expl-(x- u(t) -E)*(x -u(r))-*] 

U(r) <x Q u(t)+ & (1.7) 

11, U(t)+E<xC x 

In the solution of problem (1.6) the quality functional, produced by condition (1.4), is 
specified 

(1.8) 

In problem (l.l)-(1.5) using the initial function cpO() we can estimate a priori the value of the 
derivative y’(t) x) on the front n = u(t) 

0 s y’(t, u(t)) s V = kImax{ cpo(x)(x - uo)-l I, x E [O, uo] } (1.9) 

The number x is chosen in such a way that when t E (0, 2’) we have u(r) E (0, X), for example 
X =VT+q,. 

We choose as the set of permissible controls U(t) the set 

w 7-l = lu(.h(t) E [O, VI, v 1 E [O, 7-J ) 

We will consider the following fundamental approximation problem. 
For a specified E > 0 it is required to obtain the control I_$() E v[O, T] such that 

We will formulate the main results [2] as they relate to the approximation problem. 

Theorem 1.1. The functional J(E, U( .)) is semi-continuous from below with respect to a 
change in u(e) in a weak topology of the space &(O, 2). 

Theorem 1.2. In the set VIO, Tj, the functional J(E, u(.)) reaches an accurate lower limit. 

Theorem 1.3. For any sequence us,(*) + u..(.) in CJO, Z’l as E, -+ 0 convergence occurs in LJO, 
13 

Yd” 04, (0:4, (.)I + y’(r,u*(r);u,(.)) (1.10) 

Here y&, x; (.)) is the solution of problem (1.6) corresponding to the chosen function u(a), 
while y(t, x; u(.)) is the solution of the heat-conduction equation (l.l)-(1.3) in a region that is 
non-cylindrical with respect to the variable t 

Q(K) = ((t. x)1 0 < x < u(r), 0 < t < T) 

Theorem 1.4. As E + 0 we have the convergence 

ht.1 -+ uo(.) (u;(r) = u,(t)) in C[O,Tl 
(1.11) 

VA.. .; KC(.)) -+ yo(., .I in &(Q(uo)) 
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Here u,(a) is a function which makes the functional J(E, u(s)) a minimum in the set v[O, T], 
Y,(, *; u,(e)) is the corresponding solution of problem (1.6), and u(a) and y&e, a) is the classical 
solution of the Stefan problem (1.1)-&S). 

It follows from Theorem 1.4 that any sequence ($0, y,*.(- , -)), which solves the 
approximation problem, converges to (Q), ~,,(a, a)}, and for sufficiently small E, > 0 can be 
chosen as the approximate solution of the Stefan problem. 

Hence, the problem arises of constructing a set of functions @(-), which solves the 
approximation problem for fixed E > 0. 

2. MAIN RESULTS 

The approximation system (1.6) is a standard Dirichlet boundary-value problem for a 
parabolic-type equation defined in the cylindrical region D = (0, 2’) x (0, X). We will derive the 
necessary conditions which any controlled e(m), which solves the approximation problem, 
must satisfy. 

The following boundary-value problem will be called a conjugate system 

w;(c,x)+ w~(r,X)-&-lU,(r,X;U(~))W,(f,X)= 

=2(y~(r,u(t);u(.))+ku(t))6’(x-~(f)), (I,X)E D (2.1) 

y&, 0) = we(t, X) = 0, 0 G t c T (2.3) 

u’(t) = u(r), u(0) = ug (2.4) 

Here 6’ is the derivative in space of the distributions D*(O, X) of the Dirac &distribution, 
while y,(-, .; u(e)) is the classical solution of boundary-value problem (1.6) corresponding to 
the function u(e). 

Any distribution w, E D*(O, T; H*) which satisfies Eq. (2.1) with final condition (2.2) and 
boundary condition (2.3), in the sense of the theory of distributions, will be called a solution of 
the conjugate system. 

NC&S. 1. We will &note by H* the space conjugate to Z-Z = Hi(O, X) n H’(0, X). 
2. Using the technique of the expansion of the elements of the space H* in series in a specially chosen 

basis in the space H, it can be shown that the distribution w, is generated by an element of the space 
&(O, T; H*) and, moreover, this element has a representative which is a function with values in the space 
H* continuous in [0, T]. In view of this, the final condition w,(T, x)= 0 has a meaning in this space. 

3. We will assume that the function go(s) in condition (1.2) is such that the extension to zero outside [0, 
uO] gives an element of the space H3(0, X). 

Theorem 2.1. The conjugate system has a unique solution which is an element of the space 
LL(O, T;H*). 

We will indicate the main elements of the proof of this theorem. In the space H= Hi(O, 
X) n H’(O, X) we distinguish a basis consisting of the eigenfunctions of the problem 

-O:(X) = hjwj (X)9 X E (0, X) 

o,(O) = @j(X) = 0 (2.5) 

The following equivalent integral equation for the function w,, which generates the 
distribution w,, corresponds to (2.1) in the space D*(O, T; H*) 
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Z~tS,x)=-i jeX~(-hj(s_r))f(r)w;(q(r))d7)oi(x)- ( j=l 0 

(2.6) 

z,W)=w,(T-s,x), q(r)=u(T-r) 

f(7)=2(Y~(T-z,q(2);q(.))+ku(T-z)) 

The integral equation (2.6) can be written in the following operator form 

2,t.v *) = wo)6’(x - q(z)))(*, .) + Tz,(*, .) (2.7) 

When s E [0, S,,], where S, is a fairly small positive number, the operator (2.7) is com- 
pressive in the space &(O, S,,; H*). By splitting the section [0, T] into a finite number of 
intervals of length not greater than S,, it can be shown that Eq. (2.1) has a unique solution in 
the space &(O, T; II*). Applying standard constructions, connected with Lagrange’s method 
of eliminating bonds (limitations), following, for example, [4-6], we obtain the following 
representation for the gradient of the functional J(E, u(.)) in the space &(O, 2’) 

VJ(E,U(~))W = wy~(r,utr);ut~))+ h(r)) + 

+2j(Y;(Lu(t);u(*)) + ku(r))y:‘(r,u(t);u(.))K(t, z)dt -- 
0 

-c' I,IY,(t,X;u(.))w,(t,X;U(.))(/;(I,X;u(.))K(r,z)dudr 

K(r.2) = 
0, Z>l 

1, ZG! 

(2.8) 

Here y,(t, X; u(.)) is the solution of problem (1.6) and w,(r, x; u(+)) is the solution of the 
conjugate system. 

Taking into account the theorems on traces in Sobolev spaces [4, 51 it can be shown that 
VJ(e, q))(e) E &(O, 7). Hence, the necessary condition for an extremum , which is satisfied by 
any element @(), which solves the approximation problem, is formulated in the following 
theorem [6]. 

Theorem 2.2. Suppose I$() is the solution of the approximation problem. Then the 
following condition is necessarily satisfied 

(VJ(&I uEC))C)~ u(.) - ~E(.))@[o,T) 5 0, Vu(*) E V[O,T] (2.9) 

We will denote by lT the operator of projection in the space Z-JO, 2) onto a convex closed 
set VIO, Tj. The necessary condition (2.9) can be formulated as follows [6]. 

Theorem 2.3. Suppose I$(.) is the solution of the approximation problem. Then, for all 
a>0 the following equation holds 

.$C) = rI(uE(.) - aVJ(E,u;(~))C)) (2.10) 

Theorem 2.3 serves as the basis for approximate algorithms which enable us to construct 
sequences which approximate the extremal elements I$(‘) in the metric of the space &(O, 7’). 

The well-known results in [6], which relate to such algorithms, for example, the method of 
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gradient projection, rest on the following fact. 

Theorem 2.4. The gradient of the quality functional J(E, u(a)) satisfies the Lipschitz condition 
on the set VIO, 7J, i.e. 

Tracing the structure of the terms in the formula for the gradient of the functional (2.8), we 
conclude that to prove the theorem it is sufficient to show that the Lipschitz condition is 
satisfied for the following mappings 

UC*) --) w, -; UC.)); u(*) + w,(*, a; u(n)) (2.11) 

where the functions u(d) and II(,) are connected by the penultimate relation of (1.6). 
The satisfaction of the Lipschitz condition for the first five mappings of (2.11) is a con- 

sequence of the linearity of the boundary-value problem (1.6) with respect to ya and the 
properties of the penalty function U,. Taking (2.7) into account, to prove that the Lipschitz 
condition is satisfied for the last mapping of (2.11), it is sufficient to show this for the mapping 

By the definition of the function f(a) the mapping u(e)+ f() satisfies the Lipschitz condition with 
constant c. 

Taking into account the definition of the operator P (2.7), we obtain the limit 

Here we have taken into account the fact that u),(e), 1, solve problem (2.9, and in view of the 
uniformity of the first equation of (1.6) and the smoothness of the function U,, the quantity f,(r) is 
estimated by a certain constant K uniformly with respect to r E [0, T] and II(.) E V[O, Tj 
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FIO.1. F1a.2 

Choosing the number Ml a 0 so that M,” = max{A, B}, we obtain that the Lipschitx condition is satisfied 
for the last mapping of (2.11), and Theorem 2.4 is proved. 

Example. Taking Theorem 2.4 into account for the numerical solution of the approximation problem 

we used the gradient projection method [6]. 

The initial function cp(x) was approximated by the function 

A@nm4~‘x, ocx<uo 
v(x)= o 

{. UodX4X 

which in the neighbourhood of the point u0 was smoothed in the appropriate way. The number X was 
calculated from the formula X = [TV] +l+ h, where [.I is the integer part of the number, V was chosen 
from (1.9), and h is the step of the grid with respect to the variable x . 

The function U, was approximated by a fifth-order spline, which ensured that the solutions of the 

systems considered were sufficiently smooth. The distribution 6’(x-u(t)) was approximated by a smooth 

regularixation of the functions of the form 

for appropriate values of N. To calculate y, and W. we made use of implicit difference schemes which 
were solved by the pivotal condensation method. The calculations were carried out for the following 

values of the parameters 

T=O,l; uo=l; Ao=20; &=O.l; N=20; k=2 

the step with respect to f, r = 0.01, and the step with respect to x, h = 0.05. 
Figure 1 shows graphs of the elements of the iterative sequence u(‘)(t), which approximates the actual 

front uO(t). Figure 2 shows the corresponding temperature surface y,(t, u; u,(.)). Here, the corres- 
ponding extremal value of the quality functional J(E, II(.)) was equal to 0.001601. 

The calculations were carried out for different values of the system parameters and show that the 
proposed method gives a computer approximation of the Stefan problem. 
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